If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+25x-9=0
a = 5; b = 25; c = -9;
Δ = b2-4ac
Δ = 252-4·5·(-9)
Δ = 805
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{805}}{2*5}=\frac{-25-\sqrt{805}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{805}}{2*5}=\frac{-25+\sqrt{805}}{10} $
| 13x+44-4x=102-9x-2/ | | 82=(-15+7x)2 | | 49=2n+9,n= | | -6=-2(x-5) | | 2x+7=3+x | | 6k+2k=24 | | 3x-9=2.5+14 | | 6x+40=105 | | 1+6k-2k=9 | | -5v=-100 | | 0.75x-9x=-20 | | 5k+5=15 | | 6-w/5=11 | | 2x-7+2x=13 | | -21=−21−b | | 13x+44-4x=102-9x-22 | | 3(6-m)=38+m | | 76(17.99+c)=152.51 | | 144-10x=10 | | -3|x|+1=11 | | q-3.1=-7.4 | | 2b-6=-8b+14 | | 5=-(x+2) | | x-4.5=-1.8 | | 5/6✖m=30 | | -3/4y=14- | | x/30=20 | | 23-7(b+3)+5b=10 | | 5/6+m=30 | | .3333333x+2=7x | | 12/4-3x=4 | | (49x-21)=14x+35 |